- gleichmäßig konvergent
-
gleichmäßig konvergẹnt,Mathematik: Funktionenfolge.
Universal-Lexikon. 2012.
Universal-Lexikon. 2012.
Gleichmäßig konvexer Raum — Gleichmäßig konvexe Räume sind eine in der Mathematik betrachtete spezielle Klasse normierter Räume. Diese Räume wurden 1936 von James. A. Clarkson mittels einer geometrischen Eigenschaft der Einheitskugel eingeführt. Die gleichmäßig konvexen… … Deutsch Wikipedia
Konvergent-Divergent-System — Eine Düse ist eine röhrenförmige technische Vorrichtung. Diese kann auf ihrer gesamten Länge den gleichen Flächeninhalt haben, sich erweitern, verjüngen oder weitere komplexe Formen aufweisen. Durch eine Düse kann ein Gas oder Flüssigkeitsstrom… … Deutsch Wikipedia
Kompakt konvergent — In der Mathematik nennt man eine Folge oder Reihe von Funktionen auf einem topologischen Raum X mit Werten in einem normierten Raum E kompakt konvergent, wenn sie auf jeder kompakten Teilmenge von X gleichmäßig konvergiert. Seine Bedeutung erhält … Deutsch Wikipedia
Punktweise konvergent — In der Analysis ist punktweise Konvergenz die Eigenschaft einer Funktionenfolge fn(x), für jedes Element x des Definitionsbereichs Df gegen den Wert einer Grenzfunktion f(x) zu konvergieren, d.h. Man schreibt dann oder … Deutsch Wikipedia
Gleichmäßige Konvergenz — In der Analysis beschreibt gleichmäßige Konvergenz die Eigenschaft einer Funktionenfolge , mit einer vom Funktionsargument unabhängigen „Geschwindigkeit“ gegen eine Grenzfunktion f zu konvergieren. Im Gegensatz zu punktweiser Konvergenz erlaubt… … Deutsch Wikipedia
Chordal gleichmäßige Konvergenz — In der Analysis beschreibt gleichmäßige Konvergenz die Eigenschaft einer Funktionenfolge fn, mit einer vom Funktionsargument unabhängigen „Geschwindigkeit“ gegen eine Grenzfunktion f zu konvergieren. Im Gegensatz zu punktweiser Konvergenz erlaubt … Deutsch Wikipedia
Gleichmässige Konvergenz — In der Analysis beschreibt gleichmäßige Konvergenz die Eigenschaft einer Funktionenfolge fn, mit einer vom Funktionsargument unabhängigen „Geschwindigkeit“ gegen eine Grenzfunktion f zu konvergieren. Im Gegensatz zu punktweiser Konvergenz erlaubt … Deutsch Wikipedia
Funktionenfolge — Eine Funktionenfolge, die im nicht schraffierten Bereich gegen den natürlichen Logarithmus (rot) konvergiert. In diesem speziellen Fall handelt es sich um eine n te Partialsumme einer Potenzreihe, und n gibt die Anzahl der Summanden an. Eine… … Deutsch Wikipedia
Funktionenreihe — Eine Funktionenfolge ist eine Folge, deren einzelne Glieder Funktionen sind. Funktionenfolgen und ihre Konvergenzeigenschaften sind für alle Teilgebiete der Analysis von großer Bedeutung. Vor allem wird hierbei untersucht, in welchem Sinne die… … Deutsch Wikipedia
Grenzfunktion — Eine Funktionenfolge ist eine Folge, deren einzelne Glieder Funktionen sind. Funktionenfolgen und ihre Konvergenzeigenschaften sind für alle Teilgebiete der Analysis von großer Bedeutung. Vor allem wird hierbei untersucht, in welchem Sinne die… … Deutsch Wikipedia